Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Enrique Lozano Diz, Bruno Therrien and Georg Süss-Fink*

Institut de Chimie, Université de Neuchâtel, Case postale 2, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail: georg.suess-fink@unine.ch

Key indicators

Single-crystal X-ray study T = 153 KMean $\sigma(C-C) = 0.007 \text{ Å}$ Disorder in main residue R factor = 0.027 wR factor = 0.045 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Decacarbonyltetra-µ-hydrido-bis(tricyclohexylphosphine)-*tetrahedro*-tetraruthenium

The title cluster, $[Ru_4H_4(C_{18}H_{33}P)_2(CO)_{10}]$, which contains two tricyclohexylphosphine ligands, has been synthesized and characterized both spectroscopically and crystallographically. The molecular structure is very similar to that of the known triphenylphosphine derivative $[H_4Ru_4(CO)_{10}(PPh_3)_2]$. Received 8 May 2003 Accepted 16 May 2003 Online 10 June 2003

Comment

It has been shown by Bruce *et al.* (1986) that the hydrogenation of Ru₃(CO)₁₂ in the presence of tertiary phosphines [L = P(OMe)₃, PMe₃, PPh₃ or PPh(OMe)₂)] gives a mixture of tetranuclear complexes [H₄Ru₄(CO)_{12-n}(L)_n] (n = 1–3). From a different starting material, [H₂Ru₃(CO)₆(PCy₃)₃] (Süss-Fink *et al.*, 1998), and also by hydrogenation in an autoclave, we have obtained the analogous compound [H₄Ru₄(CO)₁₀-(PCy₃)₂], (I), which contains two tricyclohexylphosphine (PCy₃) ligands. The ¹H NMR spectrum displays four nonequivalent hydrides, as opposed to the parent cluster, [H₄Ru₄(CO)₁₀{P(OCH₃)₃]₂], which shows only one hydride resonance (Knox & Kaesz, 1971). The hydride ligands adopt a similar arrangement to that observed for [H₄Ru₄(CO)₁₀-(PH₂PCH₂CH₂PPh₂)] (Shapley & Richter, 1977).

The molecular structure of (I) (Fig. 1) was confirmed by single-crystal X-ray analysis. The geometry of (I) consists of an asymmetric Ru₄ tetrahedral core, with four long metal-metal distances and two shorter ones. The four hydrido ligands bridge the long Ru-Ru bonds, as suggested for [H₄Ru₄(CO)₁₀(PPh₃)₂] (Wilson *et al.*, 1978; Sasvári *et al.*, 1979). The metal-metal distances (long Ru-Ru, average 3.01 Å; short 2.79 Å) are slightly longer than those in [H₄Ru₄(CO)₁₀(PPh₃)₂] (long 2.97 Å; short 2.77 Å) and in [H₄Ru₄(CO)₁₀{P(OMe)₃}₂] (long 2.973 Å; short 2.792 Å)

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. The cyclohexyl groups and H atoms have been omitted for clarity.

(Aime et al., 1995). The phosphine ligands are coordinated to Ru1 and Ru2 with Ru-P distances of 2.389(1) and 2.382 (1) Å, respectively. The P1-Ru1-Ru2-P2 torsion angle is 143.6 (1) $^{\circ}$. All the carbonyl groups adopt a staggered conformation with respect to the metal edges. The carbonyl groups opposite to the unbridged Ru-Ru bonds (C46 and C48) show longer Ru-C distances (average 1.913 Å) than those opposite to bridged Ru-Ru bonds (average 1.878 Å). Otherwise no significant difference was observed in the carbonyl envelopes of the three analogous clusters.

Experimental

A solution of [H₂Ru₃(CO)₆(PCy₃)₃] (Süss-Fink et al., 1998) (127 mg, 0.1 mmol) in degassed cyclohexane (40 ml) was placed in a stainlesssteel autoclave. After purging with hydrogen, the autoclave was pressurized with hydrogen (30 bar) and heated to 373 K. After 18 h, the autoclave was placed in an ice-bath and the pressure released. The solution was evaporated to dryness and the brown residue dissolved in dichloromethane (3 ml) before being chromatographed on a silica gel (100 GF254, Merck) column, using a mixture of hexane-CH₂Cl₂ (4:1) as eluant. The major red fraction gave $[H_4Ru_4(CO)_{10}(PCy_3)_2]$ in 30% yield. ¹H NMR (200 MHz, CDCl₃): δ -19.6 (s, 1H), -18.0 (s, 1H), -17.1 (s, 1H), -15.7 (s, 1H), 1.25-2.10 (*m*, 66H); ³¹P NMR (200 MHz, CDCl₃): δ 57.3 (*s*, 1P), 53.2 (*s*, 1P). IR (cyclohexane, cm⁻¹, CO): 2069 (w), 2062 (sh), 2022 (vs), 2003 (w), 1993 (s), 1982 (m), 1971 (w), 1966 (w). MS (ESI, m/z): 1248.0 Analysis calculated for C₄₆H₇₀O₁₀P₂Ru₄: C 44.23, H 5.65%; found: C 43.66, H 5.62%. Red crystals of compound (I) were obtained at room temperature by slow evaporation of a CH₃OH-CH₂Cl₂ (3:7) solution.

Crystal data

$[Ru_4H_4(C_{18}H_{33}P)_2(CO)_{10}]$	$D_{\rm x} = 1.510 {\rm Mg} {\rm m}^{-3}$
$M_r = 1249.24$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 7997
a = 12.461 (5) Å	reflections
b = 23.934 (5) Å	$\theta = 2.0-25.9^{\circ}$
c = 18.541(5) Å	$\mu = 1.19 \text{ mm}^{-1}$
$\beta = 96.545 (5)^{\circ}$	T = 153 (2) K
$V = 5494 (3) \text{ Å}^3$	Block, red
Z = 4	$0.30 \times 0.30 \times 0.12 \text{ mm}$

Data collection

Stoe & Cie IPDS diffractometer φ scans Absorption correction: refined from ΔF (Walker & Stuart, 1983) $T_{\min} = 0.641$, $T_{\max} = 0.895$ 38794 measured reflections 10053 independent reflections	6046 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 25.9^{\circ}$ $h = -14 \rightarrow 15$ $k = -29 \rightarrow 29$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.045$ S = 0.75 10053 reflections 586 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0085P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.49 \text{ e} \text{ Å}^{-3}$
Table 1 Selected geometric parameters (\mathring{A}°)	
Selected geometric parameters (A,).	

P1-Ru1	2.3894 (12)	Ru1-Ru2	3.0484 (12)
P2-Ru2	2.3824 (11)	Ru2–Ru4	2.7977 (6)
Ru1-Ru4	3.0031 (9)	Ru2-Ru3	2.9600 (7)
Ru1-Ru3	3.0267 (7)	Ru3–Ru4	2.7824 (8)
D1 D 11 D 14	112 60 (2)	D2 Du2 Du1	107 42 (2)
$P_1 = R_{u1} = R_{u4}$	113.09 (3)	$P_{12} - Ku_2 - Ku_1$	107.43(3)
$P_{1} = Ku_1 = Ku_3$	54.060(18)	Ru4 - Ru2 - Ru1	60.475(11)
Ku4-Ku1-Ku5	34.900 (18)	Ku5-Ku2-Ku1	00.475 (14)
P1-Ru1-Ru2	166.33 (3)	Ru4-Ru3-Ru2	58.216 (12)
Ru4-Ru1-Ru2	55.07 (2)	Ru4-Ru3-Ru1	62.088 (18)
Ru3-Ru1-Ru2	58.316 (16)	Ru2-Ru3-Ru1	61.21 (2)
P2-Ru2-Ru4	169.05 (3)	Ru3-Ru4-Ru2	64.070 (18)
P2-Ru2-Ru3	118.85 (3)	Ru3-Ru4-Ru1	62.952 (13)
Ru4-Ru2-Ru3	57.714 (18)	Ru2-Ru4-Ru1	63.29 (2)

The hydride ions were located in a difference Fourier map and their positions fixed, while the remaining H atoms were included in calculated positions and treated as riding atoms. One cyclohexyl group has been treated as disordered over two sites (C34-C36), with partial occupancy factors of 0.5.

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTE-GRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Swiss National Science Foundation (grant No. 20-61227-00). We thank Professor H. Stoeckli-Evans for helpful discussions and free access to X-ray facilities.

References

Aime, S., Botta, M., Gobetto, R., Milone, L., Osella, D., Gellert, R. & Rosenberg, E. (1995). Organometallics, 14, 3693-3703.

Bruce, M. I., Horn, E., Bin Shawkataly, O., Snow, M. R., Tiekink, E. R. T. & Williams, M. I. (1986). J. Organomet. Chem. 316, 187-211.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Knox, S. A. R. & Kaesz, H. D. (1971). J. Am. Chem. Soc. 93, 4594-4596.

Sasvári, K., Main, P., Cano, F. H., Martinez-Ripoll, M. & Frediani, P. (1979). Acta Cryst. B35, 87-90.

Shapley, J. R. & Richter, S. I. (1977). J. Am. Chem. Soc. 99, 7384-7387.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany. Süss-Fink, G., Godefroy, I., Ferrand, V., Neels, A., & Stoeckli-Evans, H. (1998). J. Chem. Soc. Dalton Trans. pp. 515–516. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.
Wilson, R. D., Miau Wu, S., Love, R. A. & Bau, R. (1978). Inorg. Chem. 17, 1271–1280.