Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Enrique Lozano Diz, Bruno Therrien and Georg Süss-Fink*

Institut de Chimie, Université de Neuchâtel, Case postale 2, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail:
georg.suess-fink@unine.ch

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.027$
$w R$ factor $=0.045$
Data-to-parameter ratio $=17.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Decacarbonyltetra- μ-hydrido-bis(tricyclohexyl-phosphine)-tetrahedro-tetraruthenium

The title cluster, $\left[\mathrm{Ru}_{4} \mathrm{H}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)_{2}(\mathrm{CO})_{10}\right]$, which contains two tricyclohexylphosphine ligands, has been synthesized and characterized both spectroscopically and crystallographically. The molecular structure is very similar to that of the known triphenylphosphine derivative $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}\right]$.

Comment

It has been shown by Bruce et al. (1986) that the hydrogenation of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ in the presence of tertiary phosphines $[L=$ $\mathrm{P}(\mathrm{OMe})_{3}, \mathrm{PMe}_{3}, \mathrm{PPh}_{3}$ or $\left.\left.\mathrm{PPh}(\mathrm{OMe})_{2}\right)\right]$ gives a mixture of tetranuclear complexes $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{12-n}(L)_{n}\right](n=1-3)$. From a different starting material, $\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{6}\left(\mathrm{PCy}_{3}\right)_{3}\right]$ (Süss-Fink et al., 1998), and also by hydrogenation in an autoclave, we have obtained the analogous compound $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10^{-}}\right.$ $\left(\mathrm{PCy}_{3}\right)_{2}$], (I), which contains two tricyclohexylphosphine $\left(\mathrm{PCy}_{3}\right)$ ligands. The ${ }^{1} \mathrm{H}$ NMR spectrum displays four nonequivalent hydrides, as opposed to the parent cluster, $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10}\left\{\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right\}_{2}\right]$, which shows only one hydride resonance (Knox \& Kaesz, 1971). The hydride ligands adopt a similar arrangement to that observed for $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10^{-}}\right.$ $\left.\left(\mathrm{PH}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]$ (Shapley \& Richter, 1977).

(I)

The molecular structure of (I) (Fig. 1) was confirmed by single-crystal X-ray analysis. The geometry of (I) consists of an asymmetric Ru_{4} tetrahedral core, with four long metal-metal distances and two shorter ones. The four hydrido ligands bridge the long $\mathrm{Ru}-\mathrm{Ru}$ bonds, as suggested for $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Wilson et al., 1978; Sasvári et al., 1979). The metal-metal distances (long $\mathrm{Ru}-\mathrm{Ru}$, average $3.01 \AA$; short $2.79 \AA$) are slightly longer than those in $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (long $2.97 \AA$; short $2.77 \AA$) and in $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$ (long $2.973 \AA$; short $2.792 \AA$)

Received 8 May 2003
Accepted 16 May 2003
Online 10 June 2003
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. The cyclohexyl groups and H atoms have been omitted for clarity.
(Aime et al., 1995). The phosphine ligands are coordinated to Ru1 and Ru2 with $\mathrm{Ru}-\mathrm{P}$ distances of 2.389 (1) and 2.382 (1) \AA, respectively. The $\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{Ru} 2-\mathrm{P} 2$ torsion angle is $143.6(1)^{\circ}$. All the carbonyl groups adopt a staggered conformation with respect to the metal edges. The carbonyl groups opposite to the unbridged $\mathrm{Ru}-\mathrm{Ru}$ bonds (C46 and C48) show longer $\mathrm{Ru}-\mathrm{C}$ distances (average $1.913 \AA$) than those opposite to bridged $\mathrm{Ru}-\mathrm{Ru}$ bonds (average $1.878 \AA$). Otherwise no significant difference was observed in the carbonyl envelopes of the three analogous clusters.

Experimental

A solution of $\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{6}\left(\mathrm{PCy}_{3}\right)_{3}\right]$ (Süss-Fink et al., 1998) (127 mg , $0.1 \mathrm{mmol})$ in degassed cyclohexane (40 ml) was placed in a stainlesssteel autoclave. After purging with hydrogen, the autoclave was pressurized with hydrogen (30 bar) and heated to 373 K . After 18 h , the autoclave was placed in an ice-bath and the pressure released. The solution was evaporated to dryness and the brown residue dissolved in dichloromethane (3 ml) before being chromatographed on a silica gel (100 GF254, Merck) column, using a mixture of hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:1) as eluant. The major red fraction gave $\left[\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{10}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ in 30% yield. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $-19.6(s, 1 \mathrm{H}),-18.0(s, 1 \mathrm{H}),-17.1(s, 1 \mathrm{H}),-15.7(s, 1 \mathrm{H}), 1.25-2.10$ $(m, 66 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 57.3(s, 1 \mathrm{P}), 53.2(s, 1 \mathrm{P})$. IR (cyclohexane, $\mathrm{cm}^{-1}, \mathrm{CO}$): 2069 (w), 2062 (sh), 2022 (vs), 2003 (w), 1993 (s), 1982 (m), 1971 (w), 1966 (w). MS (ESI, m / z): 1248.0 Analysis calculated for $\mathrm{C}_{46} \mathrm{H}_{70} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{Ru}_{4}$: C 44.23, H 5.65%; found: C 43.66, H 5.62%. Red crystals of compound (I) were obtained at room temperature by slow evaporation of a $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:7) solution.

Crystal data

$\left[\mathrm{Ru}_{4} \mathrm{H}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)_{2}(\mathrm{CO})_{10}\right]$	$D_{x}=1.510 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1249.24$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 7997
$a=12.461(5) \AA$	\quad reflections
$b=23.934(5) \AA$	$\theta=2.0-25.9^{\circ}$
$c=18.541(5) \AA$	$\mu=1.19 \mathrm{~mm}^{-1}$
$\beta=96.545(5)^{\circ}$	$T=153(2) \mathrm{K}$
$V=5494(3) \AA^{3}$	Block, red
$Z=4$	$0.30 \times 0.30 \times 0.12 \mathrm{~mm}$

Data collection

Stoe \& Cie IPDS diffractometer

φ scans

Absorption correction: refined from
ΔF (Walker \& Stuart, 1983)
$T_{\text {min }}=0.641, T_{\text {max }}=0.895$
38794 measured reflections
10053 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.045$
$S=0.75$
10053 reflections
586 parameters

6046 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=25.9^{\circ}$
$h=-14 \rightarrow 15$
$k=-29 \rightarrow 29$
$l=-20 \rightarrow 20$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0085 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

P1-Ru1	$2.3894(12)$	$\mathrm{Ru} 1-\mathrm{Ru} 2$	$3.0484(12)$
$\mathrm{P} 2-\mathrm{Ru} 2$	$2.3824(11)$	$\mathrm{Ru} 2-\mathrm{Ru} 4$	$2.7977(6)$
$\mathrm{Ru} 1-\mathrm{Ru} 4$	$3.0031(9)$	$\mathrm{Ru} 2-\mathrm{Ru} 3$	$2.9600(7)$
$\mathrm{Ru} 1-\mathrm{Ru} 3$	$3.0267(7)$	$\mathrm{Ru} 3-\mathrm{Ru} 4$	$2.7824(8)$
$\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{Ru} 4$	$113.69(3)$	$\mathrm{P} 2-\mathrm{Ru} 2-\mathrm{Ru} 1$	$107.43(3)$
$\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{Ru} 3$	$109.62(3)$	$\mathrm{Ru} 4-\mathrm{Ru} 2-\mathrm{Ru} 1$	$61.642(11)$
$\mathrm{Ru} 4-\mathrm{Ru} 1-\mathrm{Ru} 3$	$54.960(18)$	$\mathrm{Ru} 3-\mathrm{Ru} 2-\mathrm{Ru} 1$	$60.475(14)$
$\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{Ru} 2$	$166.33(3)$	$\mathrm{Ru} 4-\mathrm{Ru} 3-\mathrm{Ru} 2$	$58.216(12)$
$\mathrm{Ru}-\mathrm{Ru} 1-\mathrm{Ru} 2$	$55.07(2)$	$\mathrm{Ru}-\mathrm{Ru} 3-\mathrm{Ru} 1$	$62.088(18)$
$\mathrm{Ru}-\mathrm{Ru} 1-\mathrm{Ru} 2$	$58.316(16)$	$\mathrm{Ru} 2-\mathrm{Ru} 3-\mathrm{Ru} 1$	$61.21(2)$
$\mathrm{P} 2-\mathrm{Ru} 2-\mathrm{Ru} 4$	$169.05(3)$	$\mathrm{Ru} 3-\mathrm{Ru} 4-\mathrm{Ru} 2$	$64.070(18)$
$\mathrm{P} 2-\mathrm{Ru} 2-\mathrm{Ru} 3$	$118.85(3)$	$\mathrm{Ru} 3-\mathrm{Ru} 4-\mathrm{Ru} 1$	$62.952(13)$
$\mathrm{Ru} 4-\mathrm{Ru} 2-\mathrm{Ru} 3$	$57.714(18)$	$\mathrm{Ru} 2-\mathrm{Ru} 4-\mathrm{Ru} 1$	$63.29(2)$

The hydride ions were located in a difference Fourier map and their positions fixed, while the remaining H atoms were included in calculated positions and treated as riding atoms. One cyclohexyl group has been treated as disordered over two sites (C34-C36), with partial occupancy factors of 0.5 .

Data collection: EXPOSE in IPDS Software (Stoe \& Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Swiss National Science Foundation (grant No. 20-61227-00). We thank Professor H. Stoeckli-Evans for helpful discussions and free access to X-ray facilities.

References

Aime, S., Botta, M., Gobetto, R., Milone, L., Osella, D., Gellert, R. \& Rosenberg, E. (1995). Organometallics, 14, 3693-3703.
Bruce, M. I., Horn, E., Bin Shawkataly, O., Snow, M. R., Tiekink, E. R. T. \& Williams, M. I. (1986). J. Organomet. Chem. 316, 187-211.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Knox, S. A. R. \& Kaesz, H. D. (1971). J. Am. Chem. Soc. 93, 4594-4596.
Sasvári, K., Main, P., Cano, F. H., Martinez-Ripoll, M. \& Frediani, P. (1979). Acta Cryst. B35, 87-90.
Shapley, J. R. \& Richter, S. I. (1977). J. Am. Chem. Soc. 99, 7384-7387. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Stoe \& Cie (2000). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany Süss-Fink, G., Godefroy, I., Ferrand, V., Neels, A., \& Stoeckli-Evans, H. (1998). J. Chem. Soc. Dalton Trans. pp. 515-516.

Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Wilson, R. D., Miau Wu, S., Love, R. A. \& Bau, R. (1978). Inorg. Chem. 17, 1271-1280.

